データレイクとは?全てのデータを一元管理できる保存庫

IT用語を分かりやすく噛み砕いて、初心者でもスムーズに仕事の会話に参加できるように解説します。このIT用語辞典の目的は「会話についていく」であり、情報レベルは基礎中の基礎の会話についていけるレベルです。これさえ見れば仕事の会話は怖くない! IT用語辞典

ざっくりと

  • 全てのデータを保存可能
  • 使い勝手が良く、費用も安い
  • 解析には専門的な技術が必要

データレイクとは、コスパの高い保存庫です。

概要説明

データレイクとは、あらゆる種類のデータを保存できる場所である。なぜなら、構造化データだけでなく、画像や音声などの非構造化データもまとめて保存できるからだ。

例えば、企業が日々集める大量の販売データや顧客データ、Webログなども全てデータレイクに保存できる。そして、保存コストが低く、速やかにデータを取り出せる利点がある。

つまり、データ管理における新たな解決策となる。だから、データ活用が求められる現代において、データレイクは欠かせない存在である。

職業職種

データサイエンティスト

データサイエンティストは、データレイクを頻繁に使用する。なぜなら、大量のデータを解析し、意味のある情報を抽出するためだ。例えば、企業のビジネス戦略を立てるために、様々なデータを解析する必要がある。

ITエンジニア

ITエンジニアも、データレイクを使う。なぜなら、システムの改善や新規開発に必要な情報を得るためだ。例えば、ユーザーの行動ログを解析して、システムの使いやすさを向上させるために使う。

マーケティングマネージャー

マーケティングマネージャーは、データレイクを使うことがある。なぜなら、市場の動向や顧客の行動パターンを把握するためだ。例えば、販売データや顧客の購買記録を解析し、マーケティング戦略を立てるために利用する。

データレイク(Data Lake)は、直訳するとデータの湖です。

代表例

Amazon Web Services(AWS)

AWSは、データレイクとクラウドストレージを提供する大手企業だ。なぜなら、AWS Lake Formationというサービスで、企業はデータレイクを簡単に作り、管理できるからだ。例えば、NetflixはAWSのデータレイクを使って大量のビデオストリーミングデータを管理している。

Google Cloud

Google Cloudは、データレイクソリューションを提供するビッグネームだ。なぜなら、Google Cloud Storageを使って企業は大量のデータを保存し、Googleの高度な分析ツールで分析できるからだ。例えば、SpotifyはGoogle Cloudのデータレイクを使って音楽ストリーミングデータを管理している。

James Dixon

James Dixonは、データレイクの考え方を最初に提唱した人物だ。なぜなら、彼がPentaho(現Hitachi Vantara)のCTOとして活動していた時、初めてデータレイクという概念を提案したからだ。例えば、彼のアイデアは今日のビッグデータ管理に大きな影響を与えている。

手順例

データレイクの作成手順です。

データソースを特定する

最初は、データレイクに保存するデータのソースを特定する。なぜなら、どんなデータを保存するのか知っておくことが必要だからだ。例えば、データソースはWebサイトのクリックデータやセンサーデータなど、さまざまな場所から来る。

ストレージプラットフォームを選ぶ

次に、データを保存するプラットフォームを選ぶ。なぜなら、データの種類、量、および利用方法によって最適なプラットフォームが変わるからだ。例えば、AWS S3やGoogle Cloud Storageなどのクラウドベースのデータレイクが人気だ。

データをインポートする

データをデータレイクにインポートする。なぜなら、データレイクの存在意義は、様々なデータを一箇所で管理することだからだ。例えば、データソースから直接データを抽出し、データレイクにインポートする。

データを整理する

保存したデータを整理する。なぜなら、適切に整理されていないデータは探すのが難しくなるからだ。例えば、データを種類や日付で分類する。

アクセスとセキュリティを設定する

最後に、誰がどのデータにアクセスできるか設定し、データを保護する。なぜなら、データの安全性とプライバシーはとても重要だからだ。例えば、アクセス権を適切に管理し、データを暗号化する。

類似語

データウェアハウス

データウェアハウスは、データレイクの類似語だ。なぜなら、両方とも大量のデータを保存する場所だからだ。例えば、データウェアハウスは主に構造化データを扱い、データレイクは非構造化データも含む全てのデータを扱う。

データマート

データマートも、データレイクに似た概念だ。なぜなら、両方ともビジネスの意思決定を支えるデータを保存するからだ。例えば、データマートは特定のビジネス部門が使うデータの集まりで、データレイクは企業全体のデータを扱う。

データスワンプ

データスワンプは、データレイクが管理されずに混乱状態になったときを指す。なぜなら、データが適切に分類や整理されずに放置されると、データレイクはデータスワンプに変わるからだ。例えば、どのデータがどこにあるのか分からない状態をデータスワンプと呼ぶ。

反対語

データデザート

データデザートは、データレイクの反対だ。なぜなら、データレイクが情報が豊富に溜まっている場所なら、データデザートは情報がまったくない、枯れている場所だからだ。例えば、手元にデータが全くない研究者の状況はデータデザートと言える。

データシロ

データシロは、データレイクとは反対の概念だ。なぜなら、データレイクがあらゆるデータを一箇所に集めるのに対して、データシロはデータが分散し、それぞれの場所で別々に管理されている状態だからだ。例えば、会社内で各部署がデータを独自に保管している状況はデータシロと言える。

データスワンプ

データスワンプもデータレイクとは反対だ。なぜなら、データレイクがきちんと管理され、利用しやすいデータの保管場所なら、データスワンプは管理が行き届かず、データが混乱している状態だからだ。例えば、データの属性やジャンルが混ざって整理されていない状況はデータスワンプと言える。

会話例

データ分析の仕事の中で

「この巨大なデータセットをどこに保存するのがいいと思う?」
「データレイクに保存するといいよ。大量のデータを一箇所にまとめておけるからだ。」

データ管理について話しているとき

「どうすればデータを効率よく利用できる?」
「データレイクを使うといい。ただし、データをジャンルや属性ごとに整理しておくことが大切だよ。」

データツールの利用方法について質問するとき

「専門的なデータを理解するためにはどうすればいい?」
「データレイクからデータを取り出すときは、変換ツールと専門的な知識が必要だよ。」

注意点

データレイクを使用する時の注意点はデータの管理である。なぜならばデータがどこにあるかを把握できなくなる恐れがあるからだ。

例えば、一度保存したデータが見つからなくなることがある。そしてデータの整理も重要だ。だからデータをジャンルや属性ごとに分けて保存しよう。

データレイクとデータウェアハウスは、間違えやすいので注意しましょう。

データレイクはあらゆる種類のデータをそのままの形で保存する場所です。

一方、データウェアハウスは特定の目的のために整理され、変換されたデータを保存する場所です。

当IT用語辞典の目的は「会話についていく」であり、情報レベルは基礎中の基礎で、どこよりもわかりやすくなるように、例えを入れたりしてますが、逆にわかりにくかったらごめんなさい。さらに正確性、具体性、最新性を求めてる方は、もっとググってください。
YouTubeのチャンネル登録はこちら!!
ポチッと応援よろしくね!!
開発・運営ランキング にほんブログ村 IT技術ブログ IT技術情報へ
記事を書いてる人
デプロイ太郎

IT業界の下層に長くいすぎたのかも知れないおじさんです。プロフィールまで見てくれてるのなら、ブログのブックマークとYouTubeのチャンネル登録とX(旧Twitter)のフォローお願いします。

ネットの裏側を見せるYouTube運営中!!

デプロイ太郎のSNSを見てみる!!
IT用語辞典
デプロイ太郎のSNSを見てみる!!

コメント